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01 Background

The main purpose of Speech Emotion Recognition (SER) is to classify speech
signals according to different emotions, such as anger, disgust, fear, happiness, and
sadness. It is widely used in various popular fields such as affective computing,
pattern recognition, signal processing and human-computer interaction.

Driving assist system Automatic translation Robot interaction
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01 The process of SER
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Learning a transfer subspace, which can obtain a
common subspace to reduce the discrepancy
between databases.
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01 Traditional SER method

Many classification algorithms have been employed for SER，including：

• Hidden Markov model (HMM)

• Gaussian mixture model (GMM)

• Support vector machine (SVM)

• Neural network (NN)

• Deep neural network (DNN)

• Sparse representation

• Regression algorithms
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02 The challenging problem

• Data distribution mismatch problem: in practical application scenarios, the
speaker's gender, language, age and so on are different.

• Insufficient labels problem: labeling speech emotion is time-consuming,
laborious, and require a large number of professionals.

The challenging problem of SER



02 Transfer learning

Transfer learning: The idea of transfer learning is to transfer the knowledge
gained from one domain (source domain) to learn the knowledge of related but
different domain ( target domain).

We take the labeled database as the source domain and the unlabeled database as
the target domain. The transfer learning can be used to solve the cross-domain SER
problem.



02 The related works

Transfer learning for cross-domain SER:

• transfer component analysis (TCA) 2010
• joint distribution adaptation (JDA) 2013
• transfer joint matching (TJM) 2014
• balanced distribution adaptation (BDA) 2017
• transfer linear discriminant analysis (TLDA) 2018
• scriminative transfer feature and label consistency (DTLC) 2020
• joint distinct subspace learning and unsupervised transfer classification (JDSC) 2021
• generalized subspace distribution adaptation(GDSA) 2023
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03 The proposed method
1.Our method framework:



03 The proposed method

1.Common subspace learning
We learn a common projection and conduct a PCA-like strategy in the source domain
and the target domain separately. Thus, the common subspace can preserve more
principal components of the source and target domains when performing knowledge
transfer. In addition, we use a simple but effective strategy to eliminate the domain
Shift. This problem can be formulated as the following equation:



03 The proposed method

2. Adaptive graph regularization
Because the local similarity is also virtual for the transferable performance, we design
an adaptive structured graph to further reduce the distribution divergence across
domains.



03 The proposed method

2. Our method UTCL
Combining the above two equations, we can obtain the objective function of our proposed method as
follows:

common subspace learning domain distribution alignment

sparse constraint
adaptive graph regularization
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04 Experimental setup

• Databases: Berlin (B) , IEMOCAP (I), and CVE (C).
We select five common emotional categories, i.e., anger (AN), neutral (NE), happiness
(HA), and sadness (SA), in our experiments.

• Feature Extraction:
We use the openSMILE toolkit to extract the feature set of the INTERSPEECH 2010
paralinguistic challenge (1582-dimensional).

• Classifier: linear SVM.



04 Experimental results

UTCL results:



04 Experimental results

Ablation analysis:
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Convergence analysis :
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t-SNE visualization:



Conclusions

• We consider both the common and domain-specific principal components in the
process of knowledge transfer.

• We design an adaptive structured graph as the distance metric, which can efficiently
narrow the gap between the source and target domains.

• In the future, we will investigate to develop the deep transfer learning methods
using the the proposed strategy to solve the cross-corpus dimensional SER problem.

In our method UTCL:
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